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Abstract 

We review the recent idea of a mechanism for dynamically break- 
ing the symmetries of the electroweak interactions which relies 
upon the formation of condensates involving the conventional 
quarks and leptons, such as the top quark. In particular, such a 
scheme would indicate that the top quark is heavy, greater than 
or of order 200 GeV, and gives further predictions for the Higgs 
boson mass. It may be extended to a fourth generation with new 
strong TEV scale flavor-interactions. 

We now know from CDF that nt* X 89 GeV. The top quark is thus 
the most strongly coupled fermion to the agent m dynamics which bncrkr the 
ekcinnwecJ interactions and the CDF lower limit implies a Higgs-Yukawa 
coupling constant, gL,,,, 2 0.5. A large w, moreover, leads to difficulties 
for conventional extended technicolor, and even walking technicolor for very 
large n+ ultimately requires tine-tuning. This, in turn, suggests that the 
top quark might, itself, play a fundamental rolein the breaking of electroweak 
symmetries [l - 3] by acting as a “techniquark,” as a consequence of some 
new interaction. 

Nambu first proposed that the symmetry breaking of the electroweak 
interactions arises in analogy to chiral symmetry breaking by a pairing of 
top quarks [l]. Bardeen, Hill and Lindner, (BHL), inspired by the work of 
Nambu, subsequently gave a technically complete implementation of the top- 
condensate idea [3] and obtained the first realistic predictions in a minimal 
scheme. BHL straightforwardly implemented a BCS or Nambu-Jona-Lasinio 
(NJL) mechanism in which a new fundamental interaction associated with a 
high energy scale, A, is used to trigger the formation of a low energy conden- 
sate, (ft). In this scheme only the known dynamics of the standard model 
is incorporated. BHL are ultimately able to derive precise predictions for 
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mop and mtligg. in this scheme by considering the role of the renormaliza- 
tion group. The usual single Higgs-doublet standard model emerges as the 
low energy effective Lagrangian, but with new constraints that lead to the 
nontrivial predictions. 

We will summarize here the BHL analysis. In particular the application 
of the renormalization group (RG) will be considered only briefly after a 
summary of more familiar the Schwinger-Dyson (SD) analysis of the model. 
It should be noted that the RG analysis is more general: by keeping only the 
terms in the RG that pertain to the fermion loops one reproduces exactly 
the SD results, yet one can include additional effects in the RG easily to go 
beyond the limited large-N. SD analysis. 

Consider, for discussion, the approximation in which all quarks and lep- 
tons other than the top quark are massless (a simple generalization of eq.(l) 
accomodates all nonzero fermion masses and mixing angles, but leads to no 
new predictions). We may then define the theory at the scale A to be: 

Z = Z~i,,etie + G($tRo)(td,Qm) (1) 

Here QL = (t, b)L and i runs over SL’(2)n indices, (a, b) run over color indices. 
Zkirvtis contains the usual gauge invariant fermion and gauge boson kinetic 
terms. We first consider a solution to the model based upon the effects of the 
fermionic determinant alone, i.e., a fermion bubble approximation. This is 
equivalent to a large-N&, expansion in the limit in which the QCD coupling 
constant is set to zero, and it captures nonperturbative features of the theory 
from the point of view of a small-coupling constant expansion. 

We thus demand a solution to the gap equation for the induced top quark 
mass: 

mt = -;G (ft) = 2GNcmt& 
J 

d’l (I’ - m:)-l 

1 = s (A’ - rn: ln(A*/m:)) . 

which has solutions for sufficiently strong coupling, G 2 G, = &?/NJ’ 
where G. is the “critical” coupling constant. We regard G and A as funda- 
mental parameters of the theory and we solve for mt. Normally, for very large 
A, perhaps of order the GUT scale 10 is GeV, we would expect the solution 
of this equation to produce a large mass, mt - A in the broken symmetry 
phase. We see that a solution for mt - MW << A constitutes a fine-tuning 



problem in that G-r - G;’ must then be very small. This is, indeed, the 
usual fine-tuning or gauge hierarchy problem of the standard model. The gap 
equation contains a quadratic divergence, corresponding to the usual Higgs 
mass quadratic divergence in the standard model. However, the fine-tuning 
problem will be isolated in the gap equation, i.e., once we tune G to admit 
the desirable solution we need cancel no other quadratic divergences in other 
amplitudes to any given order in perturbation theory. 

If we now consider the sum of leading large-N, scalar channel fermion 
bubbles generated by the interaction es.(l) we find: 

r.(Py = & c [(pr -4m:)(4rr)-r~r dzlog{Ar/(m; - ~(1 - z)pr)}]-r (4) 

r, is the propagator for a dynamically generated O+ boundstate, a scalar 
composite particle composed of Et. In particular, owing to the pole at p2 = 
4m:, we see that the theory predicts the boundstate mass of 277~. This is 
a standard result for the Nambu-Jona-Lasinio model. We emphasize that 
this boundstate is the physical, observable low energy Higgs boson. The 
prediction holds here only to leading order in l/NC in the absence of gauge 
boson corrections. We can also infer from eq.(4) that this particle is described 
by a field with a wave-function renormalization constant, Za, given by: 

ZE = 2 /ol dz log { A’/(m; - z( 1 - z)p*)} 

This is o relativistic boundstate, and normal intuition from nonrelativistic 
potential models does not apply. In fact, the compositeness of this state is 
reflected by the behavior of 2~: 

ZH + 0 a.6 -ppZ=/.t=+A=. (6) 

The essential point is embodied in eq.(6) and this allows us to give a more 
precise determination of the top mass upon considering the full renormahza- 
tion group behavior of the complete theory. 

Since this mechanism is indeed a dynamical breaking of the continuous 
SU(2) x U( 1) symmetry it implies the existence of Goldstone modes. More- 
over, the symmetry breaking transforms as I = $ and will produce the same 
spectrum of Goldstone bosons as in the standard model Higgs-sector. Of 
course, we have a dynamical Higgs-mechanism and the gauge bosons acquire 



masses by “eating” the dynamically generated Goldstone poles. We obtain 
a second prediction of the theory in the form of a relation between the W 
boson mass and the top quark mass as follows. 

Consider now the inverse propagator of the gauge bosom. We rescale 
fields to bring the gauge coupling constants into the gauge boson kinetic 
terms, i.e., we write the kinetic terms in the form (-1/4g2)(FPY)‘. It is 
useful to write the induced inverse W boson propagator in the form: 

-jp~(PY = b,PM - gw) - 1 &qP2 - fw 1 . (7) 

The W boson mass is the solution to the the mass-shell condition: 

w$ = P2 = &P”)f(P2) 

while the Fermi constant is the zero-momentum expression: 

GF 
3 - S&O) 

-- 

In the bubble approximation we find: 

w 

(9) 

1 -= 
Li,2(P2) 

; + N,(4r)--” /ol dz Zz( 1 - z) 

x log {LP/(zm,l + (1 - +)m: - z(1 - Z)P’)} (10) 

and: 

f(pZ) = N.(4r)-’ jol dr (m$ + (1 - z)m:) 

x 1% { A’/( zm; + (1 - z)m: - z(l- z,p*,} (11) 

A quantitative prediction for mt in terms of GF results when eq.(9) is com- 
bined with eq.(ll): 

fY0) = 4;GF = Aq4ay J,l(l - z)m: log { A”/((1 - z)m:)} 

z ;Nc(4x)- *m: log{h~/m:} (12) 



For example, with A = 10’s GeV one finds mr z 165 GeV (see Table I). 
To what extent is this an accurate prediction for mt? For one: it is valid 

only in leading order of l/N. with 9s = 0. This result, moreover, neglects 
the full dynamical effects of gauge bosom and the composite Higgs boson, 
which should be included in the renormalization group running below the 
scale A. We note that this result is substantially less than the full RG- 
improved standard model result as described below. Analogous results are 
obtained for the neutral gauge boson masses, but they contain no additional 
information beyond that described here, a consequence of the conventional 
I = i breaking mode. Moreover, the usual p parameter relationship for mt 
emerges. 

The dynamically generated scalar boundstates are point-like fields on all 
scales /J << A and are described by the following effective Lagrangian: 

L = Lkh.&ic + (GI,tjZH + h.C.) 

+z~~D,H~~ -&H’H - $(H~HJ~ (13) 

We include here the gauge invariant kinetic terms of the Higgs doublet and 
its induced quartic interaction coming from top quark loops, as well as the 
wavtfunction normalization constant, Z,. 

In the present case, however, the Higgs field is dynamical with a vanishing 
wavefunction renormalization constant at the scale p - A. That is, we have 
the following conditions at A (in terms of the unconventional normalization): 

ZE a N.l=(A/p) + O~,-A. (14) 

A, a Xl=(A/p) -+ %-.a (15) 

Note that as p + A the Lagrangian of eq.(13) involves only an auxiliary 
(non-propagating) field H with a quadratic mass-term and linear coupling. 
Thus, integrating this field out reproduces eq.( l), which shows how the RG 
boundary conditions of eq.( 14) and eq.( 15) are consistency conditions of the 
theory. Consistency is only possible when G > 0, corresponding to an at- 
tractive interaction in eq.(l). 

Conventionally one normalizes the kinetic terms of a field theory at any 
scale, IL, with a condition that the kinetic terms have free-field theory nor- 
malization. That is, we may exercise our freedom of resealing the various 
fields, H, *L, tR, etc., to define the coefficient of ID,HI’ to be unity. In . 



the present case H + H/G. The physical coupling constants, such as 
top quark Higgs-Yukawa coupling, gt, and the quartic Higgs coupling, 1, are 
then: 

Bt=& x=fx, 
Z:, 

(16) 

It is clear from eqs.(l6) that as p + A then & and 5 diverge, while $/I -+ 
constant. 

To obtain an RG improvement over the large-N. NJL model we may 
utilize these boundary conditions on gt and 5 and the full P-functions (ne- 
glecting light quark masses and mixings) of the standard model. To one-loop 
order we have the full RG equations: 

4% 
16x2 dt = ($s - !jsss _ i9;z _ 12 %)ri; (17) 

and, for the gauge cohplings: 

with 

c,=---EN. 1 *’ = 6 9 c2=---N. 43 4 a’ 11 6 3 cs -AN g 3 (19) 

where Ns is the number of generations and t = lnp. 
The precise value of the top quark mass is determined by running &(p) 

from very high values at a given compositeness scale A down to the mass-shell 
condition &(mt)u/JZ = mt. The nonlinearity of eq.(17) focuses a wide range 
of initial values into a small range of final low energy results. For an estimate 
one can assume that the gauge couplings are constant, which indicates why 
the solutions are attracted toward the effective low energy fixed-point [4]: 

at’(p) = F fi%) 
The action of the infrared fixed-point makes the top quark mass predic- 

tion very insensitive to the initial high values of the coupling constant close 
to A. The uncertainties of higher orders can be viewed as an uncertainty 
in the precise position of A, and the fixed point behavior implies that mt is 
determined up to O(lnlnA/mt) sensitivity to A. In Table I we give the re- 
sulting physical mtop obtained by a numerical solution of the renormalization 
group equations as a function of A. 



The Higgs boson mass will likewise be determined by the evolution of 1 

given by: 

169; = 12(x2 + (a2 - A)i + B - &‘) (21) 

where: 

4 = ;g12 + $$; B = $J~’ + #ga” + ;gz4 P4 

The resulting prediction of the full standard model analysis is a top quark 
mass that might be considered large in comparison to upper limits derived 
from global analyses of all electroweak data that pertains to mt. Typically 
these imply mt 5 180 to 200 GeV. If, ultimately, the physical top quark mass 
proves to be less than the theoretical prediction then it is still possible, albeit 
possibly less compelling, to maintain this mechanism by assuming that the 
gap equation is saturated by a fourth generation. The top quark then plays 
no important role itself in the symmetry breaking of the standard model and 
should have a mass between current lower bounds, but presumably much less 
than the predictions for the masses of the fourth generation. 

Moreover, one might object to this scheme on the basis of naturalness and 
the fine-tuning that is implicit in demanding a solution in the limit mt << A. 
We should therefore investigate whether there exist natural generalizations 
of the above mechanism and what kinds of natural theories might exist. 

A supersymmetric extension of the model described above has been stud- 
ied by Clark, Love and Bardeen [6]. One imagines an effective supersymmet- 
ric four-fermion interaction to exist on scales p << A and supersymmetry is 
broken softly on a scale A. Here the quadratic divergence of the gap equation 
is essentially replaced by the SUSY soft-breaking scale A. Thus, if A - rnt 
and G - l/A’ there is no large hierarchy. One generates a low energy ef- 
fective Lagrangian which now contains the two Higgs bosons as demanded 
by supersymmetry and chirality. One of these (the one associated with top) 
is now composite with analogous compositeness conditions as above. The 
renormalization group improvement is thus similar to the preceding case the 
net result for A - 100 GeV, A - 10’s GeV is nt a 200 GeV. 

There is, however, a potential problem with schemes like this. In partic- 
ular, solutions to the gap equation require G - l/A’ while the four-fermion 
effective Lagrsngian is viewed as valid up to scales j& - A. This implies 
that G is extremely large on scales p >> A and thus there may be unitarity 
violations on scales large compared to A but small compared to A. While 



the fermion bubble sum implies that a partial unitarization has been per- 
formed in some channels, there could presumably be large violations in more 
complicated processes. 

Perhaps the simplest solution to the naturalness problem is to consider 
theories in which A w 1 to 100 TeV. Then the top can probably no longer 
be upheld as the condensate since we see that mr becomes N 500 GeV and 
unacceptably large. However, a fourth generation is then workable. We 
emphasize that such has not been ruled out by neutrino counting at LEP 
and in fact, it is very reasonable in such a scheme to consider the see-saw 
mechanism to be operant at the electroweak scale. In this case a remarkable 
thing happens: light neutrinos go down to their experimental limits while 
heavy neutrinos go up to the electroweak scale [7]! Thus, we will consider a 
dynamical generation of the neutrino Majorana mass scale in the following. 
In fact, this is just a pure, ungauged BCS theory. 

Consider a Lagrangian for right-handed neutrinos in isolation: 

L = fiER;gvR + G(G&Ui~)(Dj~Vj~) (23) 

where (‘) refers to charge conjugation, (i,j) are summed from 1 to N. In 
analogy to eq.(I3) we introduce a composite field so that the effective La- 
grangian in conventional notation takes the form: 

L = hi$VR + pq2 - APat@ - ;(mtq’ + (fcfi&p&qQ + Lc.) (24) 

Now the RG equations are found to be [7]: 

16ns$ = 2Nn= + 4n3 

16x+ = 8Nn’X - 32Nn’ + 8X2 (2’4 

Note that, upon using the low energy effective Lagrangian and demanding 
that + develop a VEV v so that ip = (r~ + d/&)exp(ix/&u), we see that 
x is a massless Nambu-Goldstone mode and the residual Higgs-Majoron, 4, 
will have a mass m$ = 2vaX. The neutrinos will have Majorana masses of 
7np.f = 2nu 

Consider the solution to eqs.(27, 28) in the large-N limit. We find: 

(27) 



where we use the compositeness conditions, K(P + A) -+ 03, X(p --t A) -+ 
m. Hence, we obtain rnd = 2mM, so the usual Nambu-Jona-Lasinio result 
holds in the Majorana or BCS case as well! 

Incorporating this into a realistic theory involves more analysis. In general 
we will have additional quartic couplings of the dynamicaily generated Higgs 
boson and a term of the form /Hall@\l. The full RG equations are now 
complicated and one must treat them numerically. This analysis has been 
performed by Hill, Paschos and Luty [7]. 

Such a theory is a novelty in terms of its dynamics, being a “Strong 
Broken Horizontal Gauge Symmetry.” We have experience with the weak 
broken symmetries of the standard model and the strong confining gauge 
force of QCD, but it is unusual (albeit perfectly reasonable) to ponder a 
force that is, itself, broken yet sufficiently strong to drive the formation 
of chiral condensates. Thus a fourth generation with A - 1 TeV, is an 
intriguing possibility and we expect mquork, - 500 GeV. We further note 
that nonminimal schemes can lead to multiple Higgs doublets in low energy 
effective theory, as analyzed by M. Suzuki and M. Luty [8]. 

In conclusion, As our discussion has indicated, the compositeness of the 
auxiliary Higgs field leads to predictions for the top quark and Higgs masses 
which are equivalent to effective fixed-point arguments. We have in this 

mechanism a r&on d’etn for the single-Higgs doublet standard model with 
a heavy top quark. 



A (GeV) 10’s 10’5 1 10” 107 10s 
1 mt (GeV); Fermion Bubble 144 165 , 200 277 380 

mt (GeV); FUR RG 218 229 248 293 360 
rn~ (GeV); FuII RG 239 256 285 354 455 

Table I. Predicted mlop in two levels of increasingly better approximation 
as described in the text. “Fermion Bubble” refers only to the inclusion of 
fermion loops, equivalent to the conventional Nambu-Jona-Lasinio analysis, 
in which case mu = 2mt. AL1 effects, including internal Higgs lines and 
electroweak corrections, 
indude the mn results. 
mzi # 2%. 
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